A note on spaces between normal and k-normal spaces
نویسندگان
چکیده
منابع مشابه
compactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولNormal Biconformal Spaces Normal Biconformal Spaces
A new 8-dimensional conformal gauging avoids the unphysical size change, third order gravitational field equations, and auxiliary fields that prevent taking the conformal group as a fundamental symmetry. We give the structure equations, gauge transformations and intrinsic metric structure for the new biconformal spaces. We prove that a torsion-free biconformal space with exact Weyl form, closed...
متن کاملA note on Volterra and Baire spaces
In Proposition 2.6 in (G. Gruenhage, A. Lutzer, Baire and Volterra spaces, textit{Proc. Amer. Math. Soc.} {128} (2000), no. 10, 3115--3124) a condition that every point of $D$ is $G_delta$ in $X$ was overlooked. So we proved some conditions by which a Baire space is equivalent to a Volterra space. In this note we show that if $X$ is a monotonically normal $T_1...
متن کاملA Generalization of Normal Spaces
A new class of spaces which contains the class of all normal spaces is defined and its characterization and properties are discussed.
متن کاملSurgery on Poincaré and Normal Spaces
1. The object of this note is to announce a theory of surgery on Poincaré and normal spaces, with applications to Poincaré geometry and manifolds. The present point of view on Poincaré surgery was outlined by W. Browder in the spring of 1969, and is purely homotopy-theoretic. The main missing ingredient in the program was Lemma 1.5, and the (considerable) machinery required for its application....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2013
ISSN: 0354-5180
DOI: 10.2298/fil1301085d